Using Apache Hadoop on Rackspace Private Cloud

  • Last updated on: 2018-07-27
  • Authored by: Alyssa Hurtgen


Rackspace Private Cloud Software allows businesses to quickly and seamlessly implement a stable and reliable Apache Hadoop cluster quickly and simply in an open cloud solution.

Apache Hadoop and the Cloud

Two major trends in the technology zeitgeist include Cloud Computing and Big Data, but installing and working with this combination is not without challenges. Big Data technologies such as Hadoop are taxing on servers, storage, and network requirements, while the cloud promises elasticity and agility. How can Hadoop take advantage of this framework, and how can the cloud meet the needs of a demanding Hadoop cluster?

This article investigates the synergies and challenges presented by Apache Hadoop and its role in Rackspace Private Cloud powered by OpenStack.


OpenStack is an open cloud standard and implementation that can be used to build both public and private clouds. A private cloud is an on-demand and scalable server environment reserved for your data alone and can be hosted in a private, a Rackspace or a third party data center. Private clouds are intended for companies who want to host the servers themselves for many reasons, including security and compliance requirements.

The attraction of using a free and open-source cloud operating system, without the worry of vendor lock-in, has already led several companies to power their public and private clouds with OpenStack.

Rackspace Private Cloud Software Powered by OpenStack

Rackspace Private Cloud Software (RPCS) is a free and open-source software that can be used to launch a cloud powered by OpenStack. RPCS provides the same cloud platform that powers Rackspace’s public cloud, the largest open cloud deployment in the world.

Apache Hadoop

Born out of the large Internet properties such as Yahoo, Hadoop is an open-source project that provides a platform to store and process massive amounts of data, including both structured, complex data and unstructured data. A set of Apache projects such as Hive, Pig, HBase, HCatalog, and Ambari have grown up around Hadoop to provide tools to manipulate data and to manage and monitor this complex, clustered environment. As it has grown and added key enterprise features, its popularity has exploded because of its open source nature and the fact that it can cost-effectively scale across clusters of commodity hardware, while delivering high availability and reliability.

Challenges of using Hadoop in a virtual machine environment

Hadoop’s architecture makes certain assumptions about the underlying infrastructure. Hadoop is resilient and is architected to accommodate and rebalance stored data and processing as nodes (servers) are added or removed to and from the environment. This might sound like a perfect fit for the elasticity of the cloud. However, the current scheduling and recovery mechanism found in Hadoop is built on a more static and predictable infrastructure. It makes it difficult for Hadoop to take advantage of the rapid dynamic nature of the cloud where machines can join or leave from the cluster depending on a particular workload. There are three main challenges with Hadoop in a virtualized environment:

  • Virtual disks add IO overhead.
  • Virtual machines can be allocated on the same server, breaking Hadoop’s redundancy expectations.
  • Hadoop assumes a static infrastructure - machines can reboot or go away but generally recover. The correct approach to deal with a bad virtual machine in cloud is to provision a new one.

Benefits of using Apache Hadoop with Rackspace Private Cloud

Although Hadoop was originally architected for the world of big-iron, the choice of virtual Hadoop is a very appealing one for several reasons. With the increasing adoption of cloud, it’s very likely that your data is already stored in the cloud, or will be soon. In that case, doing the analysis on the data close to where it sits is extremely cost-effective. With Hadoop as part of the Rackspace Private Cloud, you can spin up a cluster in minutes to extend your current environment without having to move data from internal resources to the cloud.

The following figure shows an example of the OpenStack cloud architecture deployed by the Rackspace Cloud Private Cloud software. Add the Hadoop instances on the Compute node as described in the Hadoop installation and set up instructions.

While performance of a Hadoop cluster might be superior with dedicated hardware, the agility of running it in the cloud on demand can trump some of the limitations for some workloads.

In addition to improving agility, running Hadoop in an OpenStack environment provides the following additional benefits:

  • One-click setup and rapid deployment. You can go from bare-metal to an open cloud with Hadoop running on it within a matter of a couple of hours.
  • Ability to reuse physical infrastructure.
  • Multi-purpose cloud infrastructure that you can use for Hadoop and for other services like hosting your web application or databases within the same environment.
  • Shrink and expand clusters on demand, by adding or removing nodes from a cluster or by resizing Virtual Machines (VM).
  • Ability to clone a VM and boot new VMs off of snapshots.
  • OpenStack provides persistent local disks for Hadoop to use as its permanent storage.
  • When the Hadoop cluster is idle, some machines can be decommissioned and reused for other purposes.

As Hadoop and the cloud grow together, the benefits of the combined offer grow stronger. For instance, there is ongoing work in the Apache Hadoop community to make Hadoop virtualization-aware which ensures optimal data placement and provides support for failures in a cloud environment. The future looks even brighter because this enables a truly elastic and reliable Hadoop Cluster. This work is all being completed in the open-source community.

Hortonworks Data Platform for Hadoop

Hortonworks Data Platform (HDP) is the only 100% open-source data management platform for Apache Hadoop. Built and packaged by the core architects, builders, and operators of Hadoop, HDP includes all of the necessary components to manage a cluster at scale and uncover business insights from existing and new big data sources. Not only is it the most stable and reliable Hadoop distribution, but it is also the most close to the open-source trunk available and is distributed as 100% open-source with no holdbacks or proprietary components. It is perfect for OpenStack.

Hadoop software installation and set up

Rackspace Private Cloud makes it easy to create a production-ready cloud powered by OpenStack within a few hours. After you have your Rackspace Private Cloud ready, you can provision Hadoop in the cluster.

There several ways to install Hadoop, but most of them are geared to installing in a dedicated environment. You can try using of the existing options like Ambari or manually install the RPMs. We chose to write our own Saltstack deployment for OpenStack to make Hadoop installation easier for public or private clouds powered by OpenStack and even bare metal. To use the cookbooks and plugins, see the following installation and user documentation.

Using Heat to manage nodes and clusters

OpenStack Heat is an orchestration engine that launches instances, connects them to networks, and kicks off Saltstack for software installation and configuration. You can launch a configuration with the following command:

heat stack-create hadoop-stack -f hadoop-stack.yaml \ -e env.yaml -P flavor=m1.large;floating-network-id=<NET_ID>; \ datanodes-count=<COUNT>;keyname=<KEYNAME>;image=<IMAGE_ID>

Run a map-reduce job

Log in to your master node and launch a job by using the following instructions:

$ cd /usr/lib/hadoop
$ hadoop jar hadoop-*-examples.jar pi 10 1000000

Track job progress by using the JobTracker’s web UI at http://master_node:50030/.


Using Hadoop with OpenStack is a compelling choice that brings benefits like agility, automation, ease of deployment, and multi-tenancy and security through isolation of resources. Combining the Rackspace Private Cloud and OpenStack with Hadoop and Hortonworks creates an enterprise-ready Hadoop solution that can be deployed in minutes into the open cloud.

Share this information: